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Recent advances in nonlinear dynamics demonstrate a remarkable complexity of
patterns outside of equilibrium, which are derived from simple basic laws of
physics. A class of mathematical models has been identified providing a variety
of such patterns in the form of static, periodic, or chaotic attractors. These models
appear to be so general that they predict not only physical, but also biological,
economic, and social patterns of behavior. Such a phenomenological reductionism
may suggest that, on the dynamical level of description, there is no difference
between a solar system, a swarm of insects, and a stock market. However, this
conclusion is wrong for a very simple reason: Even primitive living species
possess additional non-Newtonian properties which are not included in the laws
of Newtonian or statistical mechanics. These properties follow from a privileged
ability of living species to possess a self-image (a concept introduced in
mathematical psychology). In this paper we consider the existence of a self-
image as a postulate to be added to classical physics for modeling behavior of
living systems. We show that self-image can be incorporated into the mathematical
formalism of a nonlinear dynamics which evolves in probability space. We
demonstrate that one of the basic invariants of living systems is their ability to
predict the future, which is associated with intelligence.

1. INTRODUCTION

Modeling of life can be performed on many different levels of descrip-
tion. In this paper we will be concerned with geometrical invariants of
biosignatures representing prints of behavioral patterns. One of the most
remarkable patterns in biology is the formation of species aggregation as
an evolutionarily advantageous state in which members derive benefits of
protection, mate choice, and centralized information, balanced by the costs
of limiting resources. Consisting of individual members, aggregations never-
theless function as an integrated whole, displaying a complex set of behaviors
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not possible at the level of the individual organism. Aggregation occurs at
all sizes from bacteria to whales, from groups of 10 to 10 million. Therefore,
in the world of bacteria, biosignatures should be associated with configura-
tions of aggregations. Operationally, aggregations fit into two classes: Those
that self-organize and those that form in response to external objectives (light,
food). They may have a variety of geometrical forms (milling, in which
individual members circle about an unoccupied core, polarity without a leader,
a distinct shape whose topology varies to suit the tasks, etc.). Each such
configuration can be associated with a story which explains its evolutionary
advantage [2].

The most powerful modeling tool for analysis of biological patterns is
based upon the fundamental concept of nonlinear dynamics called an attractor.
An attractor is a stable dissipative structure which does not depend (at least,
within a certain basin) upon the initial conditions. Due to this property, the
whole history of evolution prior to the attraction becomes irrelevant, which
represents a great advantage for information processing, and in particular for
pattern recognition.

The mathematical approach to pattern formation is based upon the theory
of active systems (both natural and artificial) which is described by a system
of PDE [1]

ȧi 5 gi ({a}) 1 o
j

bij(¹aj)2 1 o
ij

Dij¹2aj , 1, 2, . . . , n (1)

where {a} 5 a1 . . . an are state variables, g is a multiextremal function, and
bij, Dij are constants.

The properties of the solutions to Eq. (1) in terms of the type of attractor
depend upon a certain dimensionless control parameter R (such as the Reyn-
olds or the Rayleigh number). This dependence may lose its uniqueness at
certain critical points when R 5 Rcr, and the solution becomes linearly
unstable. Because of the richness of postinstability structures, many different
stable patterns (both deterministic or chaotic) may appear when R 5 Rcr. These
structures include effects of fluid dynamics, nonlinear diffusion, chemical
kinetics, etc., and its solutions can form such patterns as Bernard cells, Taylor
vortices, trigger and spiral waves, traveling pulses, etc. Surprisingly, the same
equations are exploited for simulating biological patterns such as transplanta-
tion and regeneration in hydra, compartment formation in Drosophila, mam-
malian coat markings, pigment patterns on mollusk shells, etc. However,
such a “universality” of Eq. (1) immediately disqualifies it as a tool for the
detection of life since it does not suggest any mechanisms for life–nonlife
discrimination. Therefore it is not a coincidence that the main success in
simulating biological patterns using Eq. (1) is associated with morphogenesis,
i.e., with structures during the growth of an organism rather than with a
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collective behavior of swarms or colonies. Indeed, in contrast to a set of
physical particles, which interact via flows of energy, living species interact
via flows of information, which is not captured by Eq. (1). The flow of
information is produced and processed by a signaling system whose complex-
ity ranges from interactions between single molecules to interactions between
species in ecological systems, and may include receptors, transducers,
enzymes, diffusible second messengers, etc. [2]. In order to incorporate signal-
ing phenomena into the process of pattern formation on the same level of
description, a phenomenological approach based upon ideas proposed in ref.
3 will be developed in the next section.

2. REFLEXIVE DYNAMICS

In contrast to physical systems, from the viewpoint of nonlinear dynamics
a biological system can be considered as a multibody system (with “bodies”
represented by cells) interconnected via information flows. Since these flows
as well as responses to them may be distorted, delayed, or incomplete, the
motion of each cell becomes stochastic, and it can be simulated by a controlled
random walk. This random walk is caused not by an external noise (as in
the case of a physical particle), but by an internal effort (a “free will”)
triggered by the signaling system. Physically it is represented by an ordered
sequence of runs, pauses, and tumbles.

One of the main challenges in modeling living systems is to distinguish
a random walk of physical origin (for instance, Brownian motion) from one
of biological origin; this will constitute the starting point of the proposed
approach. As conjectured in ref. 3, a biological random walk must be nonlin-
ear. Indeed, any stochastic Markov process can be described by a linear
Fokker–Planck equation (or its discretized version); only those types of
processes have been observed in the inanimate world. However, all such
processes always converge to a stable (ergodic or periodic) state, i.e., to states
of lower complexity and higher entropy. At the same time, the evolution of
living systems is directed toward a higher level of complexity if complexity
is associated with a number of structural variations. The simplest way to
mimic such a tendency is to incorporate a nonlinearity into the random walk;
then the probability evolution will attain the features of the Burgers equation:
the formation and dissipation of shock waves initiated by small shallow wave
disturbances. As a result, the evolution never “dies”: it produces new, different
configurations which are accompanied by increase or decrease of entropy
(the decrease takes place during formation of shock waves, the increase
during their dissipation). In other words, the evolution can be directed “against
the second law of thermodynamics” by forming patterns outside of
equilibrium.
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In order to elucidate both the physical and the biological aspects of the
proposed model, let us start with a one-dimensional random walk:

xt1t 5 xt 1 h sgn [R 1 m], h 5 const, t 5 const (2)

where h and t are the space (along x) and time steps, respectively, R is a
random function taking values from 21 to 1 with equal probability, and m
is a control parameter (.m. # 1/2). At a reflecting boundary m 5 61/2.
(Physical implementations of this model are discussed in the Appendix).

Equation (1) describes motion in actual physical space. But since this
motion is irregular, it is more convenient to turn to probability space:

ft1t,x 5 pft,x2h 1 (1 2 p) ft,x1h; ft1t 5 f (t 1 t, x) (3)

where f(x, t) is the probability that the moving particle occupies the point x
at the instant t, and the transition probability

p 5
1
2

1 m, 0 # p # 1 (4)

If the system interacts with the external world, i.e.,

m 5 m(x) and therefore p 5 p(x)

then the solution to Eq. (3) subject to the reflecting boundary conditions
converges to a stable stochastic attractor [4, 5]. However, if

m 5 m( f ) and therefore p 5 p( f ) (5)

Eq. (3) becomes nonlinear, and Eq. (2) is coupled with Eq. (3) via the
feedback (4).

From the physical viewpoint, the system (2), (3) can be compared with
the Langevin equation, which is coupled with the corresponding Fokker–
Planck equation such that the stochastic force is fully defined by the current
probability distributions, while the diffusion coefficient is fully defined by
the stochastic force. The process described by this system is Markovian since
the future still depends only upon the present, and not the past. However,
now the present includes not only values of the state variable, but also its
probability distribution, and that leads to the nonlinear evolution of the
random walk.

From the mathematical viewpoint, Eq. (2) simulates probabilities and
Eq. (3) manipulates their values. The connection between these equations is
the following: if Eq. (2) is run independently many times and a statistical
analysis of these solutions is performed, then the calculated probability will
evolve according to Eq. (3).

From the biological viewpoint, Eqs. (2) and (3) represent the same
subject: the simplest living species, or, using terminology introduced by
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Leibniz, a monad. Equation (2) simulates its motor dynamics, i.e., actual
motion in physical space, while Eq. (3) can be associated with mental dynam-
ics describing information flows in the probability space. Such an interpreta-
tion [3] was evoked by the concept of reflection in psychology. Reflection
is traditionally understood as the human ability to take the position of an
observer in relation to one’s own thoughts [11]. In other words, reflection is
a self-awareness via the interaction with the “image of the self.” In terms of
the phenomenological formalism proposed above, Eq. (3) represents the
probabilistic “image” of the dynamical system (2). If this system “possesses”
its own image, then it can predict, for instance, future expected values of its
parameters, and by interacting with the image, change expectations if they
are not consistent with the objective. In this context, Eq. (1) simulates acting,
and Eq. (2) simulates “thinking.” Their interaction can be implemented by
incorporating probabilities, their functions, and functionals into the control
parameter m [see Eq. (5)]. From the cognitive viewpoint, m implements the
self-awareness associated with the amount of information which the system
possesses about its self-image.

In general, Eq. (3) is representable in the form (1), and therefore it
possesses a variety of different complex patterns outside of equilibrium.
However, in contrast to Eq. (1), Eq. (3) simulate patterns in probability space,
i.e., in the space of the mental dynamics, so that the corresponding actual
motions in physical space are described by nonlinear random walks (2).
Because of this a species is not locked up in a certain pattern of behavior:
it still can perform a variety of motions, and only the statistics of these
motions is constrained by this pattern.

3. EMERGING SELF-ORGANIZATION.

We will start the analysis of the coupled motor–mental dynamics with
Eqs. (2) and (3), where

p 5 sin2 (aft,x 1 b), m 5 p 2
1
2

, a, b 5 const, f 5 f (x, t)

(6)

i.e.,

xt1t 5 xt 1 h sgnFR 1 sin2(aft,x 1 b) 1
1
2G (7)

ft1t,x 5 ft,x2h sin2(aft,x 1 b) 1 ft,x1h cos2(aft,x 1 b) (8)

Here a and b are constant weights, or control parameters.
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In order to illustrate the fundamental nonlinear effects, we will analyze
the behavior of special critical points by assuming that

a 5
5p
12

, b 5 2
p
6

(9)

f0 5 f (t 5 0) 5 5
f0

(1) 5
1
5

at x 5 2l

f0
(2) 5

4
5

at x 5 l

f0
(3) 5 0 otherwise

Then the solution to Eq. (8) will consist of two waves starting from the points
x 5 2l and x 5 l, traveling toward each other with the constant speed y 5
h/t, and carrying the values f0

(1) and f0
(2), respectively, i.e.,

f 5 f0
(1) 12l 1

h
t

n2 1 f0
(2)1l 2

h
t

n2, n 5 0, 1, . . . ,
l
h

(10)

where n is the number of time steps.
At n 5 1/h, the waves undergo confluence into one solitary wave at

x 5 0:

f 5 H1 at x 5 0
0 otherwise

at t 5 nt 5
l
h

t (11)

This process represents a discrete version of formation and confluence of
shock waves, and it is characterized by a decrease of the Shannon entropy from

H(0) 5 2
1
5

log2
1
5

2
4
5

log2
4
5

. 0 to H(nt) 5 0 (12)

However, the solitary wave (11) is not stationary. Indeed, as follows from
Eq. (8), the solution at t 5 (n 1 1)t splits into two values:

f(n11)t 5 H1/2 at x 5 l 6 h
0 otherwise

(13)

The process (13) can be identified as a discrete version of diffusion during
which the entropy increases again from

H(nt) 5 0 to H[(n 1 1)t] 5 2log2
1
2

5 1 (14)

The further evolutionary steps t $ (n 1 2)t will include both diffusion and
wave effects, and therefore the solution will endlessly display more and more
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sophisticated patterns of behavior in the probability space. The corresponding
solutions to Eq. (7) represent samples of the stochastic process (8) in the
form of nonlinear random walks in actual physical space.

Thus, the solutions to coupled motor–mental dynamics simulate emerg-
ing self-organization, which can start spontaneously. At this level of descrip-
tion, such an effect is triggered by instability rather than by a specific objective.
In other words, the model represents a “brainless” life. However, it serves
well the global objective of each living system: survival. Indeed, it is well
established in biology [6] that marginal instability makes the behavior of a
living system more flexible and therefore more adaptable to a changing
environment.

The model (2), (3) is easily generalizable to three-dimensional motions:

x(i)
t1t 5 x(i)

t 1 hi sgn[(R 1 mi)], i 5 1, 2, 3 (15)

ft1t,x(i) 5 &
3

i51
[pi ft,x(i)2h 1 (1 2 pi) ft,x(i)1hi] (16)

Here x(1), x(2), x(3) are the space coordinates, and f 5 f (x(1), x(2), x(3), t) 5
f (1)f (2)f (3) is the joint probability that the species occupies the point x(1), x(2),
x(3) at the instant t.

As in the one-dimensional case, here

pi 5
1
2

1 mi , 1, 2, 3

In particular, one can assume that

pi 5 sin2(ai ft,x 1 b), i 5 1, 2, 3 (17)

It should be noticed that the nonlinear random walks (15) in all three directions
are coupled by means of the joint probability f via the control parameters mi.

From the mathematical viewpoint, the model of mental dynamics (8) is
linked to the Burgers equation in the sense that its pattern formation outside
of equlibrium is based upon the balance between dissipation and shock waves.

In general, this model can be enriched with Belousov–Zhabotinskii
effects by a slight modification of the random walk (7):

xt1t 5 xt 1
1
2

h{1 2 sgn[R 1 m]} sgn[R 1 m] (18)

which now includes a third choice for the species: to remain at rest with
the probability
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q 5
1
2

1 m (19)

The corresponding version of Eq. (8) reads

ft1t,x 5 qft,x 1 pft,x2h 1 (1 2 q 2 p) ft,x1h, 0 # p, q # 1 (20)

If q 5 q( f ) and p 5 p( f ), one arrives at the discretized version of the
combined Burgers–Belousov–Zhabotinskii equation, which possesses a vari-
ety of new complex patterns outside of equilibrium that increase the adaptabil-
ity of species to environmental changes. The Belousov–Zhabotinskii equation
has been exploited for studying pattern formation in biology [1]. However,
these patterns dwell in physical space; in contrast, Eqs. (18) and (20) simulate
patterns in probability space, i.e., in the space of the mental dynamics, so
that the corresponding actual motions in physical space are described by
nonlinear random walks (7) and (18), respectively. Again, because of this, a
species is not locked up in a certain pattern of behavior: it still can perform
a variety of motions, and only the statistics of these motions is constrained
by this pattern. It should be emphasized that such a “twist” is based upon
the concept of reflection, i.e., the existence of a self-image.

4. FEEDBACK FROM EXPECTED FUTURE

The feedback (6) from mental to motor dynamics was expressed via the
current probability distribution f 5 f (x, t). In general, one can include in (6)
memories f 5 f (x, t 2 t) and nonlocal effects f 5 f (x 6 h, t). In all these
cases, the mental dynamics evolves independently of the motor dynamics.
This property allows living systems to predict the future by running a self-
image faster than real time, and then correct (if necessary) the motor dynamics
(7) via the feedback from the expected future. Actually such a privilege of
living systems represents the basic component of the concept of intelligence.

Let us now show how this phenomenon can be implemented in the
model of motor–mental dynamics. For this purpose one has to modify the
feedback (6) as follows:

p8 5 sin2 (a8ft01t,x 1 b8), m8 5 p8 2
1
2
, a, b 5 const (21)

where ft01t is found from Eq. (8).
It should be emphasized that ft01t is the expected distribution for t . t0

since it is not yet affected by the new feedback (21). The real future
distribution f 8t01t is found from the modified mental dynamics:
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f 8t01t,x 5 f 8t,x2h p8 1 f 8t,x1h (1 2 p8), t . t0 (22)

in which p8 is defined by Eq. (21). Equation (22) can be rewritten in explicit
form for the case when, starting from t0 1 t, the feedback (6) is replaced
by the feedback (21):

f 8t01t,x 5 f 8t,x2h sin2{a8[ f 8t,x2h sin2(af 8t,x 1 b) 1 f 8t,x1h cos2(af 8t,x 1 b)] 1 b8}

1 f 8t,x1h cos2{a[ f 8t,x2h sin2(af 8t,x 1 b)

1 f 8t,x1h cos2 af 8t,x 1 b)] 1 b} (23)

The process described by Eq. (23) is still Markovian despite the fact that
here the present is correlated with the future: indeed, as demonstrated above,
the (expected) future is uniquely defined by the present [see Eq. (8)]. However,
the process (23) is more sophisticated than those described by Eq. (8) and
it can be used for systems with objectives since then the feedback from the
expected future plays the role of a gradient (in the probabilistic space) which
guides the evolution of the motor dynamics.

The feedback (21) can be presented in a more general form:

p8 5 sin2F( ft01nt), n 5 1, 2 . . . , etc., m 5 p8 2
1
2

(24)

where F is an arbitrary function, and ft01nt is the expected distribution at t 5
t0 1 nt found from the equation

ft1t,x 5 p0 ft,x2h 1 (1 2 p0) ft,x1hj p0 5 p8 at t 5 t0 (25)

5. SYSTEMS WITH GLOBAL OBJECTIVES

As shown in the previous sections, the solutions to Eq. (8) or to its
generalized versions, Eqs. (15), (22), and (25), can simulate the emergance
of temporary self-organization, which is characterized by a decrease of the
Shannon entropy [see Eq. (12)]. In this section we discuss a link between
this phenomenon and global objectives of a living system.

First, as follows from the relation between finite differences E and
derivatives D,

Eh 5 ehD (26)

the continuous representation of Eqs. (8), (15), (22), and (25) contains deriva-
tives of all orders:
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A1
­f
­t

1 A2
­2f
­t2 1 . . . 5 b1 f 1 b2

­f
­x

1 b3
­2f
­x2 1 b4

­3f
­x3 1 . . . (27)

while all the coefficients depend upon f and the control parameters a, b, a8,
b8, etc. [see Eqs. (6), (17), (21), and (24)].

Therefore, the solutions to Eq. (27) may include the effects of the Burgers
equation [7] (A1 5 1, B2 5 f, B3 5 const; the remaining A1, B1 5 0), the
Korteweg–deVries equation [8] (A1 5 1, B2 5 f, B4 5 1; the remaining A1 Bi

5 0), and the Belousov–Zhabotinskii equation [1] (A1 5 1, B1 Þ 0, B3 5
const; the remaining Ai , Bi 5 0), which are, respectively, formation and
diffusion of shock waves, formation of trains of solutions, and formation of
trigger waves. The transitions from one pattern to another formally can be
achieved by an appropriate change of the control parameters a, b, etc. In
order to illustrate this, let us turn to the matrix representation of Eq. (3).
We have

p(t 1 t) 5 p(t)P (28)

Here the vector p 5 p1, p2, . . . , pN represents the probability distribution
f (x, t) at the points x 5 1, 2, . . . , N, so that

pi (t) 5 f (xt , t), i 5 1, 2, . . . N, o
N

i51
pi 5 1 (29)

For reflective boundary conditions at x 5 1 and x 5 N, the matrix P has the
following form [5]:

P 5 1
1 0 0 ??? ??? 0 0 0
0 1 2 p p 0 ??? 0 0 0
0 1 2 p 0 p ??? 0 0 0
??? ??? ??? ??? ??? ??? ??? ???
0 0 ??? ??? ??? ??? p 0
0 0 ??? ??? ??? 1 2 p p 0
0 0 ??? ??? ??? ??? 0 1

2 (30)

If

p 5 const (31)

Eq. (25) has a closed-form solution [5] which tends to a stationary distribution
for large number of steps

n À N (32)

and we have



Dynamics of Intelligent Systems 2117

pk(n À N ) → p/(1 2 p) 2 1
( p/(1 2 p))N 2 1 1 p

1 2 p2
k21

(33)

and

pn 5 1
p1 ??? pN

p1 ??? pN
???

???
p1 pN

2 for n À N (34)

We pose the following problem: store a set of m stationary stochastic processes
given by vectors of their probability invariants

I (i) 5 I (i)
1 , I (i)

2 , . . . , I (i); i 5 1, 2, . . . , m (35)

(these invariants can be represented, for instance, by expectation E, variance,
and higher moments) in such a way that when presented with any of the
processes ṗ( j] out of the set of M processes

ṗ( j) 5 ṗ( j)
1 , ṗ( j)

2 , . . . , ṗ( j)
N , j 5 1, 2, . . . , M (36)

Eq. (28) converges to one of the stochastic processes (35).
The performance

ṗ → I (37)

represents the correspondence between two classes of patterns, i.e., a heteroas-
sociative memory on a high level of abstraction. Indeed, each process in (37)
stores an infinite number of different patterns of behavior, which, however, are
characterized by the same sequence of invariants (35) and (36), representing a
decision-making strategy. Considering a living system as a decision-maker,
one can give the following interpretation of the mapping (37).

Classical artificial intelligence as well as artificial neural networks are
effective in a deterministic and repetitive world, but faced with uncertainties
and unpredictabilities, both of them fail. At the same time, many natural and
social phenomena exhibit some degree of regularity only on a higher level
of abstraction, i.e., in terms of some invariants. For instance, each particular
realization of a stochastic process can be unpredictable in detail, but the
whole ensemble of these realizations, i.e., “the big picture,” preserves the
probability invariants (expectation, moments, information, etc.) and is there-
fore predictable in terms of behavior “in general.”

Hence, if the strategy of a decision-maker is characterized by a pattern ṗ(i)

from (36), and starting from t 5 0 external information becomes unavailable, it
should change its strategy from pattern ṗ(i) to a corresponding pattern from
(35), which can be associated with a decision based upon “common sense.”
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It is implied that the attracting strategies I are sufficiently “safe,” i.e., they
minimize the risk taken by the decision-maker in case of an uncertain exter-
nal world.

We will illustrate the approach by the simplest case when there are m
attracting stochastic processes stored and each of them is characterized by
only one invariant, the expectation E(i), i 5 1,2, . . . , m, while the rest of the
invariant are not specified.

The first step in the implementation of the mapping (37) is to find an
appropriate feedback. Departing from Eqs. (21) and (24), we will seek the
nonlinear feedback in the form

p 5 sin21o
N22

i52
aipi 1 a12, o

N

i51
pi 5 1 (38)

pi 5 0, pN 5 0 (39)

Equation (38) introduces N 2 2 weights ai (i 5 1, 2, . . . , N 2 2) to implement
the mapping (37), while Eq. (39) enforces reflecting boundaries.

Substituting Eq. (38) into Eq. (33), one obtains

pk 5

tan21o
N22

i52
ajṗi 1 a1221

tan2N1o
N22

i52
aiṗi 1 a12 2 1

tank211o
N22

i52
aiṗi 1 a12,

k 5 1, 2, . . . , N ¿ n (40)

One should notice that Eq. (33) (which was derived under the assumption
p 5 const) is still valid for the case (38) since starting with n À N, the
stochastic process is supposed to be stationary (provided by an appropriate
choice of the weights ai), and therefore pi 5 const in Eq. (38)

The existence of m stationary stochastic processes with expectations E(i)

(i 5 1, 2, . . . , m) requires that N 2 2 weight coefficients ai satisfy the
following m 5 N 2 2 equations:

E (i) 5 o
N23

K51 3k

tan21o
N

j51
ajṗ

(i)
j 1 a02 2 1

tan2n1o
N

j51
ajṗ

(i)
j 1 a02 2 1

tank211o
N

j51
ajṗ

(i)
j 1 a02 214,

i 5 1, 2, . . . , m (41)

Here E(i) are expectations of the stochastic processes (35) to be stored, which
are given, and ṗ(i)

j are probabilities of the stochastic processes (36) characteriz-
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ing the original states of the system (which are also given). In order to solve
this system in a dynamical way, one can apply the simplest version of the
backpropagation strategy by minimizing the “energy”:

E 5 o
N22

i51 5E (i) 2 o 3k

tan21o
N23

j51
ajṗ

(i)
j 1 a12 2 1

tan2N1o
N23

j51
ajṗ

(i)
j 1 a12 2 1

3 tank211o
N23

j51
ajṗ

(i)
j 1 a12 2 146 → min (42)

i.e., by using the following recurrence relationships:

a( j11)
i 5 a( j)

i 2 l2
i

Ei 2 Ei21

a( j)
i 2 a( j21)

i
, l2

i 5 const, i 5 1, 2, . . . N 2 2

(43)

where

Ej 5 E(a( j)) (44)

Here a( j) and Ej are the jth approximations of the corresponding values of a
and E.

It should be recalled that Eq. (43) represents a gradient dynamical system,
and therefore the recurrence procedure in (43) always converges. However,
since the nonlinearity of Eq. (42) (with respect to aj) is not quadratic, the
solution to Eq. (43) can be trapped in a local minima. Therefore, the recurrence
procedure should be repeated several times starting from different initial
values of a(0), and then the lowest minimum of E has to be chosen as
the solution.

Thus, the dynamical system (2), (3) represented in the equivalent form

xt1t 5 xt 1 h sgn(R 1 m) (45)

p(t 1 t) 5 p(t)P (46)

where the matrix P is expressed by Eq. (30), and

p 5 sin(2)1o
N23

j52
ajpj 1 a12, aj 5 const, p1 5 0, pN 5 0, o

N

j51
pj 5 1

(47)
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m 5 p 2
1
2

(48)

possesses the following property: If the initial value xt50 in Eq. (45) is drawn
from a stochastic process ṗ(j) [see Eqs. (36)], then the solution to Eqs. (45)
and (46) will approach (for n À N ) a new stochastic process which is
characterized by a prescribed expectation E(j) [see Eq. (32)]. This attracting
stochastic process can be associated with the global objective of the underlying
living system.

We will now make three comments concerning the mapping (37) intro-
duced above.

First, strictly speaking, not all of the stochastic processes from Eq. (35)
are true attractors: some of them can be repellers. Indeed, the corresponding
weights aj were found from static rather than dynamical conditions [see
Eqs. (41)], and therefore the stability of these stochastic processes was not
established. The situation here is similar to that in neural nets, where some
of the equilibrium (or fixed) points are stable and some are not. In terms of
Markov chains [see Eq. (46)], the possibility that some of the stochastic
processes (35) are unstable (and therefore will never be approached) follows
from the nonlinearity (47). It should be recalled that classical Markov chains
are linear, and all the processes with reflecting boundaries coverge to stable
stochastic processes.

Second, Eqs. (33), (34), (40), etc., include the condition that n .. N,
i.e., that the number of time steps is significantly larger than the number of
space steps N. Actually, this condition can be specified if one evokes a well-
known result from the Markov chain theory [5] which quantifies Eq. (33):

p(n)
jk 5

p/(1 2 p) 2 1
(p/(1 2 p)N 2 1 1 p

1 2 p2
k21

1
2n11p111/2(n2j1k)(1 2 p)1/2(n1j2k)

N o
N21

r51
SG . . . (49)

where

Sr 5 Hcosn pr
N Fprj

N
2 11 2 p

p 2
1/2

sin
pr( j 2 1)

N G
3 Fsin

prk
N

2 11 2 p
p 2

1/2

sin
pr(k 2 1)

N GJ
3 H1 2 2[p(1 2 p)]1/2 cos

pr
N J

21

(50)
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As n → `, Eq. (49) tends to Eq. (33), while the second term in Eq. (49)
allows one to evaluate n such that this term can be ignored in comparison
to the first term.

Equation (50) [as well as Eq. (33)] was derived under assumption that
p 5 const. However, it is still valid for the case (38) as long as the second
term in Eq. (49) can be ignored since then the stochastic process is stationary,
and therefore pi 5 const in Eq. (38). Obviously, this conclusion is true only
if the stochastic process in (35) is stable. One should notice that p 5 const
is not necessarily the same as p at t 5 0.

Third, if the attracting stochastic processes in Eq. (37) must be specified
not only by the expectations (35), but also by higher moments, the additional
[to Eq. (41)] constraints

o
N23

j51
kṗr

j 5 M (i)
r , r 5 2, 3, . . . , rx , i 5 1, 2, . . . , m (51)

should be imposed upon the weights aj.
Here M (r)

r are the specified moments for the ith stochastic process, ṗj

are the probabilities expressed by Eq. (40), and m is the number of the
attracting stochastic processes, and

m 5
N 2 2

r
(52)

The number of the prescribed moments m can be increased if the feedback
(38) is generalized to the following form:

p 5 sin21a1 1 o
N22

i52
aipi 1 o

N22

i,j52
aijpipj 1 . . .2

6. SYSTEMS WITH HIDDEN IDENTITY

A living system may have a global objective which is different from
those described in the previous section. Indeed, let us consider a biological
or social system in the form prey–predator game. Then it may be beneficial
for a participant to make its behavior as unpredictable as possible. For a
physical system, that would mean the maximization of the Shannon entropy
subject to the constraints imposed upon its motion:

H 5 2o
N

i51
pi log pi → max, o

N

i51
pi 5 1, etc. (53)

But a living system can do better than that: it can mislead its adversaries by
hiding its identity.
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The simplest way to do that is to make the feedback from mental to
motor dynamics chaotic. For that purpose, rewrite Eq. (2) in the form

xt1t 5 xt 1 h sgnFR 1
1
2

m 1
1
2 1m8 2

1
22G (54)

with the bias

m 5 sin2 o
N

i51
ai ft,xi 2

1
2

, 2
1
2

# m #
1
2

(55)

m8t1t 5 4mt(1 2 mt), 0 # m8 # 1 (56)

Equation (55) represents the deterministic components of the nonlinear feed-
back, and Eq. (56) is its chaotic component. Indeed, Eq. (56) is known as a
logistic map, which leads to chaotic time series.

Now the transition probability in Eq. (3), with reference to Eq. (4),
becomes

pt 5
1
2 1sin2 o

N

i51
ai ft,xi 1 m8t 1

1
22, 0 # p # 1 (57)

Since it includes the chaotic component 1–2 m8, the solution to Eq. (3) develops
chaotic features, and therefore the probability distribution f(t, x) becomes
unpredictable.

Thus, the motor dynamics (54) is now run by the mental dynamics

ft1t,x 5 pt ft,x2h 1 (1 2 pt) ft,x1h (58)

via the feedback (57), which includes a nonlinear deterministic component
defined via the bias (55) and a chaotic component defined by the bias (56).
The last component, which implements the hiding of identity by making
the probability distribution f (x, t) unpredictable, can be associated with a
deception dynamics.

7. SYSTEMS WITH LOCAL OBJECTIVES

In many real-life situations, a living system does not know or cannot
formulate a global objective. Instead, it can formulate local, i.e., a one-time-
step-ahead objective. We will start with the simplest case: a predator–prey
pursuit. We will assume that both the predator and prey possess not only the
images of their selves, but images of their adversary as well. In terms of the
three-dimensional model (15), (16), the pursuit can be formulated as follows:



Dynamics of Intelligent Systems 2123

x(i)
t1t 5 x(i)

1 1 hi Sgn(R 1 m(1)
i ), i 5 1, 2, 3 (59)

f (i)
t1t,xi 5 [pi f (i)

t,x(i)2hi 1 (1 2 pi) f (i)
t,x(i)2hi], i 5 1, 2, 3 (60)

f̃ (i)
t1t,y(i) 5 [q̃i f̃ (i)

t,y(i)2h 1 (1 2 q̃i) f (i)
t,y(i)1hi], i 5 1, 2, 3 (61)

y(i)
t1t 5 y(i)

t 1 hi sgn(R 1 m(2)
i ), i 5 1, 2, 3 (62)

w(i)
t1t,x(i) 5 [qiw(i)

t,y(i)2hi 1 (1 2 qi)w(i)
t,y(i)1hi], i 5 1, 2, 3 (63)

w̃(i)
t1t,xi 5 o

3

i51
[ p̃iw̃

(i)
x(i)2hi

1 (1 2 p̃i)w̃
(i)
x(i)1hi

], i 5 1, 2, 3 (64)

Here Eq. (59) simulates the motor dynamics of the predator, i.e., a random
walk in three-dimensional space. Equation (62) describes the predator’s men-
tal dynamics, i.e., evolution of the probability f (x(1), x(2), x(3), t) 5 f (1)f (2)f (3),
where the x(1) denote the predator’s position, and p1, p2 and p3 are the transition
probabilities, which depend upon fxj 5 f (t, xj):

pi 5
1
2

1 m(1)
i 5 sin2 o

N21

j51
(a(i)

j f (i)
xj 1 a(i)

j ), i 5 1, 2, 3, o
N

j51
f (i)

xj 5 1

(65)

where the a(1)
j are constant weights to be found.

Equations (62) and (63) simulate the motor–mental dynamics of the
prey, where the y(i) denote the prey’s positions in space, and w(y(1), y(2),
y(3), t) 5 w(1)w(2)w(3) is the corresponding probability: q1, q2, and q3 are the
transition probabilities

q1 5
1
2

1 m(2)
i 5 sin2 o

N21

j51
(b(i)

j w(i)
yi 1 b(i)

j ), i 5 1, 2, 3, o
N

j51
w(i)

yi 5 1

(66)

Finally, Eqs. (61) and (64) simulate mental images of the adversaries: f̃ ( ỹ (1),
ỹ (2), ỹ (3), t) 5 f̃ (1)f̃ (2)f̃ (3) and q̃i represent the prey’s images in the “mind” of
the predator, and w̃(x̃ (1)

1 , x̃ (2), x̃ (3), t) 5 w̃(1)w̃(2)w̃(3) and p̃i represent the predator’s
images in the “mind” of the prey.

If the predator and the prey never met before, the best strategy for them
is to assume that

q̃i 5 (1 2 pi), p̃i 5 (1 2 qi) (67)

i.e., to consider the adversary as an extreme opposite to the self.
At this point, Eqs. (59), (60) and (62), (63) are coupled only in pairs,

while Eqs. (61) and (64) are decoupled.
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Now we introduce the objectives of the pursuit: the predator objective
is to minimize the distance between the prey and itself during the next n
steps, and the prey’s objective is to maximize the same distance.

The distance after n steps is expressed as

E 5 o
3

i51
(x(i)

k 2 y(i)
k )2 (68)

The only way to optimize this is to manipulate the weights ai and bi in Eqs.
(65) and (66) using the strategy of the gradient descent approach [see Eqs.
(42) and (43)]. However, here this strategy cannot be applied in a direct way
since neither the predator nor the prey knows its actual future positions x(i)

and y(i). Therefore, these positions have to be predicted based upon their
images. The images can be represented by expectations, modes, or medians
of the corresponding probability distributions. For instance, in case of expecta-
tions, the distance (68) is replaced by

Ẽ 5 o
3

i51
(x̂ (i)

k 2 ỹ(i)
k )2 (69)

where

x̂ (i)
k 5 o x(i)

k f (1), y(i)
k 5 o y(i)w(i)

k (70)

Then the predator’s and the prey’s images of the same objective are,
respectively,

Ẽ1 5 1o x(i)f (i)
k 2 o ỹ(i)w(i)

k 2
2

(71)

E2 5 1o x̃(i)f̃ (l) 2 o y(i)w(i)
k 2

2

(72)

These images are different since neither the predator nor the prey knows the
actual probabilities f and w of its adversary, and they replace them by the
images w̃ and f̃, respectively [see Eqs. (65)–(67)]. Now the strategy of the
predator follows from the gradient descent minimization

a( j11)
i(1) 5 a( j)

i(1) 2 l2
1

Ẽ(k)
1 2 Ẽ( j21)

1

a j
i(1) 2 a( j21)

i(1)
, l1 5 const (73)

b( j11)
i(1) 5 b j

i(1) 2 l2
1

Ẽ( j)
1 2 Ẽ( j21)

1

b j
i(1) 2 b( j21)

i(1)
, l1 5 const (74)

Similarly, the strategy of the prey follows from the gradient descent
maximization
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a( j11)
i 5 a j

i 1 l2
2

Ẽ( j)
2 2 Ẽ( j21)

2

a j
i 2 a( j21)

i
, l2 5 const (75)

b( j11)
i 5 b( j)

i 1 l2
2

Ẽ( j)
2 2 Ẽ( j21)

2

b( j)
i 2 b( j21)

i
(76)

Thus, prior to each move, the predator and prey find the optimal weights ai

and bi from Eqs. (73)–(76), plug them into Eqs. (59)–(64) via Eq. (65), and
then make the next (“optimal”) step.

There are four comments to be made concerning the model of pursuit.
First, the system (59)–(64) is now fully interconnected via the objectives
(71), (72) by means of Eqs. (73)–(76) and (65), (66). In particular, this means
that the stochastic processes (60) and (63) are correlated. But this does not
necessarily mean that there exists a joint probability function f̃ ({x},{y}) for
which f (1) and f (2) are the conditional probabilities. Indeed, as shown in refs.
8 and 9, the stochastic processes (60) and (61) are entangled in the sense
that there is no such transformation of coordinates {x}, {y} which would
decouple them.

Second, each species, exploits the probabilistic images of the self and
its adversary to predict future positions and to make the best available move,
and this remarkable property, which is a privilege of living systems, can be
associated with intelligence.

Third, success of the pursuit depends upon the degree of superiority of
the predator’s mental capacity over that of the prey if the mental capacity is
measured by the speed of learning, i.e., by finding the correct values of the
weights a and b from the gradient descent (73), (74).

Fourth, in the pursuit model, each species can demonstrate intelligence
not only via the correct prediction of future moves, but also by making
misleading moves based upon deception dynamics (56) if the feedbacks (65)
and (66) are modified to the form (57).

Finally, as follows from the model, successful pursuit can be associated
with the catching of a prey by a predator, which depends upon how well the
predator predicts the prey’s moves. The power to predict starts with Eq. (67)
when the predator selects the transition probabilities for its image of the prey.
The ability to make this simple and universal choice mimics the so-called
innate properties conferred by all those elements with which the species was
born. However, the choice (67), in general, may not be good enough: it does
not include the specific characteristic of the prey. That is why the very first
acquaintance between the adversaries may end in a failure on the part of the
predator. But suppose that the predator managed to catch the prey. Then it
can “record” the values of the actual objective (68) and its image (71).
Therefore the difference
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.DE1. 5 .E 2 Ẽ1. (77)

will serve as a measure of the mismatch between the image and reality.
Based upon this difference, the predator can correct its image of the prey by
appropriate change of q̃i in Eq. (67). Actually it should minimize the difference
(77) as a function of ãi and b̃i , where

q̃i 5 qi(ãi, b̃i), i 5 1, 2, 3 (78)

i.e.,

ã( j11)
i 5 ã( j)

i 2 l2
1

.DE ( j)
1 . 2 .DE ( j21)

1 .
ã( j)

i 2 ã( j21)
i

, l 5 const (79)

b̃( j11)
i 5 b̃( j)

i 2 l2
1

.DE ( j)
1 . 2 .DE ( j21)

1 .
b̃( j)

i 2 b̃( j21)
i

(80)

It should be noted that the predator cannot rerun the actual trajectory after
the pursuit has been ended: it can change .DE. only by rerunning the image
of this trajectory, i.e., by simulating the solutions to Eqs. (59)–(61).

Eventually,

lim
j→`

ã( j)
i 5 ai , lim

j→`
b̃( j)

i 5 bi (81)

i.e., the predator’s image of the prey coincides with the prey’s self image.
Thus, if Eq. (67) is associated with innate properties, Eq. (80) can be

associated with acquired or learned properties.
Obviously the prey learns from the same experience, and as a result, it

can acquire some defenses by correcting its image of the predator, i.e., by
departing from Eq. (67) to the following:

p̃i 5 p̂i(ã8i , b̃8i ), i 5 1, 2, 3 (82)

where the weights ã and b̃ are adjusted by means of minimizing the difference

.DE2. 5 .E 2 Ẽ2. (83)

8. SELF-REPRODUCTION

Self-reproduction is one of the privileges of living systems. In order to
simulate it within the framework of our phenomenological formalism, we
have to make the following assumption: all species of the same genotype
have the same probabilistic invariants of their behaviors. In other words,
their trajectories are different samples of the same stochastic process, i.e.,
they are different on the level of deterministic details, but are identical on
the level of statistics. Then the self-reproduction process can be simulated
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by throwing into the “battlefield” newer and newer samples of the same
stochastic process [for instance, the one described by Eq. (8)]. The rate of
reproduction has to be governed by the logistic equation:

Nj11 5 Nj 2 gNj (1 2 Nj) (84)

where N is the population density, and g is the coefficient describing effects
of food availability and death rate.

Thus, again we arrive at two different types of descriptions: the global
picture is still expressed by Eq. (8), i.e., by the mental dynamics in the
probability space; the local picture, or motor dynamics, is represented by a
set of nonlinear random walks (7) whose density (in physical space) is
expressed by Eq. (84).

If several genotypes occupy the same physical space, then the global
picture (in the mental space) is represented by Eqs. (60), (61), (63), and (64),
while the motor dynamics is described by two sets of random walks (59)
and (62) whose densities are expressed by the corresponding versions of
Eq. (84).

9. COLLECTIVE PERFORMANCE

In this section we will briefly describe collective phenomena in the
proposed model, which combines the paradigms discussed above (on the
level of individual or pairs of species) with the effects of swarms of species.
In other words, we will depart from a single monad and move to a system
of interacting (collaborating or competing) monads within the framework of
dynamics of intelligent systems.

9.1. Collaboration

Suppose that there are several different, but “friendly” swarms of species
having the probability distributions

fj 5 fj ({xj}, {yj}, {zj}, t); j 5 1, 2, . . . , s (85)

where {xj}, {yj}, and {zj} are sets of space coordinates occupied by the
species of the jth swarm.

We will postulate that within the framework of our formalism, “friendli-
ness” is equivalent to the existence of the joint probability

f 5 f ({x1}, . . . , {zs}) (86)

so that the fj in Eq. (85) are interpreted as the conditional probabilities:

fj 5 f{ j}.{ }({x1}, . . . , {zs}) (87)

As shown in ref. 8, that imposes upon fj the following constraints:
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­2

­xj ­xk
ln

fj

fk
5 0; j, k 5 1, 2, . . . , s; j Þ k (88)

If these constraints are satisfied, one can describe the joint evolution of all
s swarms by only one equation:

fi1t,{x} 5 &
5

j51
&
3

i51
[pi

i ft{x}i
i2{h}i

i 1 (1 2 pi
j) ft,{x}i

j1{h}i
j] (89)

which represents the evolution of the image of the whole set of species in
the probability space. This evolution as a collective brain controls the motor
dynamics of each species:

x(i)
t1t 5 x ( j)

t 1 hj sgn(R 1 mj), j 5 1, . . . , 3 (90)

in a centralized way.
The simplest version of the dependence pj ( f ) is

pj 5 sin2(aj f 1 bj), mj 5 pj 2
1
2

(91)

which is similar to Eq. (6) for a single species. However, here the coefficients
aj and bj may depend upon the population density N, i.e.,

aj 5 aj (N ), bj 5 bj (N ) (92)

At the same time, the coefficient g in Eq. (84) is likely to depend upon the
probability f, i.e.,

g 5 g( f ) (93)

As a result, Eqs. (92) and (93) couple the motor–mental dynamics (90), (91)
with the dynamics of the population density (84).

Hence, in addition to the multidimensional version of the nonlinear
effects discussed for a single species, such as spontaneous self-organization,
one can expect phenomena associated with a many-body problem: aggrega-
tion, formation of new alliances, explosions of population densities, etc.

9.2. Competition

Suppose the swarms described by the probabilities (85) are “hostile.”
In terms of our formalism this means that the constraints (88) are not satisfied,
and therefore a joint probability (86) does not exist. In other words, the
hostile swarms cannot be controlled by a unified “collective brain” as in the
previous case. However, they can be entangled in a more sophisticated way.
Indeed, here, instead of Eq (86), one arrives at a set of s coupled equations:
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f ( j)
t1t,{x} 5 &

3

i51
[p( j)

i f ( j)
t,{x}i

j2{h}i
j 1 (1 2 p( j)

i ) f ( j)
t,{x}i

i1{h}i
j], j 5 1, 2, . . . , s

(94)

where

p( j)
i 5 p( j)

i ( f (1), . . . , f (s)) (95)

Each of these equations represents the evolution of the image of the corres-
ponding swarm; however, these evolutions are coupled via Eqs. (95).

In order to emphasize the fundamental difference between the unified
evolution (89), i.e., the collective brain, and the coupled evolutions (94), one
has to recall that in physics the violation of compatibility conditions is usually
associated with fundamentally new concepts or a new physical phenomenon.
For instance, the incompatibility of velocities in a fluid, i.e., nonexistence
of a velocity potential

­yx

­y
2

­yx

­x
5 curl y Þ 0 (96)

introduces vorticity and rotational flows. In the same way, the violation of
Eqs. (88), i.e., nonexistence of a joint probability (89), leads to coupled
evolution of the stochastic processes (94), while the degree of the
incompatibility

ink( f ( j), f (k)) 5
­2

­xj ­xk
ln

f ( j)

f (k) (97)

can be interpreted as a some sort of “vorticity” in the probability space.
As mentioned earlier, the “vorticity” makes it impossible to find a

transformation of the coordinates xj that would decouple the stochastic pro-
cesses (94), i.e., these processes are entangled.

Thus, the “vorticity” (97) brings a new dimension to the complexity of
the motor–mental dynamics (89), (90): it makes the control of the motor
dynamics of each species less centralized and more distributed. In addition,
as shown in ref. 8, the information capacity of a set of entangled stochastic
processes (94) is greater than that of the processes having the joint probabil-
ity (89).

In the same way as described for a simple species, the evolutions (85)
and (90) can be driven not only by nonlinear instability, but by objectives
as well, which include learning, self–nonself discrimination (on the level of
swarms), calibration, etc.
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10. MINIMUM-FREE-WILL PRINCIPLE

In the previous discussion, to demonstrate the concept, the nonlinear
function p( f ) was chosen in the simplest form (6) or (38). However, the only
restriction imposed upon this function is the condition

0 # p # 1 (98)

In general, it can be sought in the form

p 5 sin2[w( f )] (99)

where w( f ) is an arbitrary function or a functional of f.
If this function is parametrized, for instance, as

w( f, a) 5 o
q

k50
ak f k (100)

then the weights ak can be found from the objective by minimization of the
corresponding functional [see Eqs. (41) or (73)–(76)].

But suppose that there are several different ways in which the same
objective can be achieved, i.e., the function (100) includes a set of weights b

w 5 w( f, a, b) (101)

which do not affect the objective. How should the species solve such a
redundancy problem?

Let us assume that the physical (i.e., the passive) component of the
species motion is a symmetric random walk which is a discretized version
of Brownian motion.

Then the transitional probability p in Eq. (99) can be decomposed as

p 5 sin2Fŵ( f ) 1
p
4G, i.e., p 5

1
2

if ŵ( f ) [ 0 (102)

In this form, the nonlinear component of p, i.e., the function ŵ( f ), represents
the deviation from the passive motion, i.e., “free will.”

Now, if a species can achieve its objective by several different ways, it
will choose the one that minimizes the deviation from passive motion, i.e.,
it will minimize its free-will component. In other words, if a species is offered
a “free ride” by physics, it should take it. This minimum-free-will principle
can be associated with the Gauss minimum constraints principle, according
to which the motion of a constrained system minimizes the deviation from
the corresponding free motion. However, in contrast, the minimum-free-will
principle is not required by physics, but it is imposed by biology. Indeed, a
“crazy” species can move “against” the minimum-free-will principle, but it
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will waste its energy and “intellectual” effort, and as a result, its chances for
survival will be decreased.

A natural measure of deviation from the passive motion is the difference

.DH. 5 .H0 2 H. (103)

where H0 and H are the entropies of the passive and the actual motions,
respectively.

Now we can give the mathematical formulation of the minimum-free-
will principle: if the objective of the species is defined in the time interval
0 # t # T, its motion will minimize the free-will measure

Fw 5 o
T

t50
.H0 2 H.t (104)

subject to the objective. In other words, if the weights a in Eq. (84) are
defined by the objective, then the redundant weights b* must be found from
the condition

Fw(b*) 5 inf F(b) (105)

Recall that

H 5 2o
L

x50
fx log2 fx , 0 # x # L

and f is found from Eq. (2), where p 5 sin2[w( f, b)].

11. REFLEXIVE CHAINS

As follows from the previous sections, the fundamental difference
between a physical and an intelligent system is the possession of a self-image
by the latter. In Section 7 we introduced a set of images: the self-image and
the image of the adversary. In this section we will describe a general picture
of the world of images, and in particular, the complexity of its reflexive
structures.

The notion of reflexive structures was introduced in mathematical psy-
chology [11] based upon an axiomatically defined formalism. In our approach,
the same phenomenon is represented as an interaction between a stochastic
process (describing motor dynamics, i.e., actual reality) and its own probabil-
ity evolution (describing mental dynamics, i.e., self-image); no additional
postulates are required. However, the feedback which controls motor dynam-
ics includes a set of control parameters ai [see, for example, Eq. (38)] which
are supposed to be found from the objective [see Eqs. (42) and (43)]. Only
when the same objective can be achieved by several different combinations
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of the control parameters, i.e., when these parameters are redundant, does
the minimum-free-will principle have to be applied.

Let us consider a set of n interacting monads. Each monad is character-
ized by its motor coordinates xj (t) and self-image coordinates fj (t, xj), j 5 1,
2, . . . , n. We associate such a state of the system with the first level of
reflection. On the second level of reflection, each monad has images of the
rest of the monads, i.e., fjk(t, xk), k Þ j. On the third level of reflection, each
monad has images of images of the rest of the monads of themselves as well
as of others, i.e., fjkl(t, xk , xs), k Þ j, etc.

It can easily be verified that the number of images on the first level of
reflection is

l1 5 n

and on the second level of reflection is

l2 5 n(n 2 1) 5 n(l1 2 1), etc.

Finally,

lm 5 n(lm21 2 1) (106)

5 n 1 n(n 2 1) 1 n[n(n 2 1) 2 1)] 1 . . . } nm

where m is the level of reflection.
Thus, the number of images characterizing the state of an n-monad

system grows polynomially as a function of n and exponentially as a function
of m.

For an m level of reflection, the behavior of each monad is described
by a system of (lm /n) 1 1 equations corresponding to the variables xj , fj , fjk, fjkx,
fjksq, etc. The first group of variables, xj , characterizing the motor dynamics, is
governed by equations of the type (59); the second group of variables, fj ,
characterizing the dynamics of the self-image, is governed by equations of
the type (60); the third group of variables, fjk, characterizing the dynamics
of the images of the other monads, is governed by equations of the type (61),
etc. All these equations are coupled via the common objective of the type
(68), which adds another set of dynamical equations of the type (73)–(76)
governing the adjustments of the control parameters ai , bi , etc.

As follows from Eq. (106), the world of images is never complete:
each new level of reflection brings in an additional set of images with the
corresponding number of the governing dynamical equations, and that leads
to deeper and deeper interactions between monads. It may happen that some
monads have longer chains of images than others; obviously, in case of
competition, these monads can better predict the evolution of the whole
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system, and that will give them advantage over those with shorter chains
of images.

Let us assume now that the number of levels of reflection tends to
infinity, i.e., m → `, and, as follows from Eq. (106), the number of interacting
images lm as well as the number of the correspondings governing equations
grow exponentially. Does the system’s behavior tend to some limit pattern
such, that starting with some larger m, it no longer changes? Even without
rigorous mathematical analysis it is obvious that the answer to this question
depends upon the structure of the objective. Indeed, suppose that the system
consists of n monads, and let us start with the case when they are collaborating.
Then their objective can be formulated in terms of minimization of some
functional E of the coordinates xj (t), fj (t, xj), etc., through the control parame-
ters ai under the assumption that this functional has a unique global minimum.
Since each new level m of reflection brings in a new set of control parame-
ters, obviously

Em11 # Em , and Em → min at m → ` (107)

This means that the system is attracted to a certain pattern of behavior
when the number of reflection levels is sufficiently large, and therefore its
complexity is limited.

If the functional E has several local minima, then each of them can be
approached with some probability, i.e., the system may have several different
limit patterns of behavior if m → `.

Finally, for competing monads, the functional E may have only saddle
points when a minimum with respect to one set of coordinates corresponds
to a maximum with respect to another. In this situation, the system does not
have any stable limit behavior, and it will endlessly increase its complexity
as m → `. But does such an unstable limit behavior have some stable
invariants at m → ` in the same way as chaos does? At this stage we do
not have an answer to that question.

12. DISCUSSION AND CONCLUSION

There have been many attempts to describe the behavior of living systems
by the mathematical formalism of classical physics, which includes Newton-
ian mechanics, thermodynamics, and statistical mechanics [1]. Notwithstand-
ing the indisputable success of this approach, we will concentrate on its
limitations. To illustrate, we start with the following example: consider a
small physical particle in a state of random migration due to thermal energy,
and compare its diffusion, or physical random walk, with a biological random
walk performed by a bacterium which can be associated with the simplest
biological particle, i.e., a monad. The fundamental difference between these
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two types of motions can be detected in probability space: the probability
evolution of the physical particle (which can be associated with the Fokker–
Planck equation) is always linear, and it has only one attractor—a stationary
stochastic process where the motion is trapped. On the contrary, a typical
probability evolution of a biological particle is nonlinear: it can have many
different attractors, but eventually each attractor can be departed from without
any “help” from outside. However, such a behavior violates the second law
of thermodynamics unless there is another “hidden” object which interacts
with the monad. In order to find this object, one has to turn to mathematical
psychology, which postulates that a human possesses a self-image and inter-
acts with it. In terms of the mathematical formalism of classical physics, a
self-image can be represented by the probability evolution (mental dynamics)
associated with the corresponding random walk (motor dynamics). Then the
interaction between the monad and its self-image is implemented by the
feedback from mental to motor dynamics, and that makes the probability
evolution nonlinear. Actually, the deviation from linear evolution expresses
the “free will” of the monad. From the physical viewpoint, the self-image is
an external object, which reconciles the biological random walk with the
second law of thermodynamics. (The need for a reconcilation was expressed
by Schrödinger [13].)

Thus, it has been proposed that in order to capture dynamical invariants
of the behavior of a living system, classical physics should be equipped with
an additional postulate, namely, that each living system possesses a self-
image. This self-image can be incorporated into the mathematical formalism
of nonlinear dynamic which evolve in probability space. The only difference
between classical and probabilistic nonlinear dynamics is in the additional
constraints imposed upon the latter by the normalization conditions following
from the definition of probability. Actually the self-image postulate can serve
as a definition of living systems characterized by purposeful movements.

It has been demonstrated that within the formalism introduced above,
a living system can predict the future in terms of probabilities due to the
smoothness of evolution in probability space (such smoothness does not exist
in actual space because of irregularities of a random walk). This ability,
which increases chances for survival, can be considered as a basic component
of intelligence.

The proposed model of the simplest biological particle, a monad, consists
of a generator of stochastic processes which represents the motor dynamics
in the form of nonlinear random walks, and a simulator of the nonlinear
version of the Fokker–Planck equation which represents the mental dynamics.
Both components can be implemented by physical hardware (neural networks,
cellular automata, etc.), and thereby one can introduce artificial intelligence
systems which have the same phenomenology as natural ones.
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Coupled motor–mental dynamics can simulate such processes as emerg-
ing serf-organization, decision-making based upon “common sense,” preda-
tor–prey evolutionary games, a collective brain, etc. Therefore, the proposed
model can serve as a starting point for a unified approach to modeling the
behavior of intelligent systems.

APPENDIX

The model of motor dynamics [Eqs. (2), (7), (15), etc.] has been presented
in the form of a discrete automation since it was assumed that at any given
moment the system stays in one of the few discrete states, while the transition
between such states was neglected.

In this Appendix we describe a complete physical scenario which
includes both discrete (probabilistic) and continuous (deterministic) compo-
nents of the motor dynamics, thereby implementing Eqs. (2), (7), (15), etc., by
“physical hardware,” i.e., without random number generators. The approach is
based upon non-Lipschitz dynamics [9, 10], which introduces discreteness
and randomness in a natural way, i.e., without man-made devices.

Let us consider the dimensionless motion of a particle of unit mass
driven by a non-Lipschitz force:

ẏ 5 vy1/3 sin vt, v 5 const, [y] 5
m2/3

sec5/3 (A1)

ẋ 5 y (A2)

where y and x are the particle velocity and position, respectively.
Subject to the zero initial condition

y 5 0 at t 5 0 (A3)

Eq. (A1) has a singular solution

y 5 0 (A4)

and a regular solution

y 5 614v
3v

sin2 v
2

t2
3/2

(A5)

These two solutions coexist at t 5 0, and this is possible because at this
point the Lipschitz condition fails:

Z­ẏ
­yZ

l→0

5
1
3

vy22/3 sin vt.t→0 → ` (A6)

Since
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­ẏ
­y

. 0 at .y. Þ 0, t . 0 (A7)

the singular solution (A4) is unstable, and the particle departs from rest
following the solution (A5). This solution has two (positive and negative)
branches [since the power in (A5) includes the square root], and either branch
can be chosen with probability p or 1 2 p, respectively. It should be noticed
that as a result of (A5), the motion of the particle can be initiated by infinitesi-
mal disturbances (such motion never can occur when the Lipschitz condition
holds: an infinitesimal initial disturbance cannot become finite in finite time
[8, 9]).

Strictly speaking, the solution (A5) is valid only in the time interval

0 # t # 2p/v (A8)

and at t # 2p/v it coincides with the singular solution (A4)
For t . 2p/v, Eq. (A4) becomes unstable, and the motion repeats itself

to the accuracy of the sign in Eq. (A5).
Hence, the particle velocity y performs oscillations with respect to its

zero value in such a way that the positive and negative branches of the
solution (A5) alternate randomly after each period equal to 2p/v.

Turning to Eq. (A2), one obtains the distance between two adjacent
equilibrium positions of the particle:

Dxi 5 xi 2 xi21 5 6#
2p/v

0
14v
3v

sin
v
2

t2
3/2

dt 5 64(3v)25/2 v3/2 5 6h

(A9)

Thus, the equilibrium positions of the particle are

x0 5 0, x1 5 6h, x2 5 6h 6h . . . (A10)

while the positive and negative signs randomly alternate with probabilities
p and 1 2 p, respectively.

Obviously, the particle performs an unrestricted random walk: after each
time period

p 5 2p/v (A11)

it changes its value on 6h [see Eq. (A10)].
The probability density f (x, t) is governed by the following difference

equation:

f (x, t 1 t) 5 pf (x 2 h, t) 1 (1 2 p) f (x 1 h, t) (A12)

which represents a discrete version of the Fokker–Planck equation, while
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#
`

2`

f (x, t) dx 5 1 (A13)

We make several comments on the model (A1) and its solution.
First, the “viscous” force

F 5 2vy1/3 (A14)

includes static friction [see Eq. (A6)], which actually causes failure of the
Lipschitz condition. These type of forces are well known in theory of vis-
coplasticity [12]. It should be noticed that the power 1/3 can be replaced by
any power of the type

k 5
2n 2 1
2n 1 1

, n 5 1, 2, . . . (A15)

with the same final result (A12). In particular, by selecting large n, one can
make k close to 1, so that the force (A13) will be almost identical to its
classical counterpart

Fc 5 2vy (A16)

everywhere excluding a small neighborhood of the equilibrium point y 5 0,
while at this point

dF
dy

→ `, but Z­Fc

­y Z → 0 at y → 0 (A17)

Second, without the failure of the Lipschitz condition (A6), the solution
to Eq. (A1) could not approach its equilibrium y 5 0 in finite time, and
therefore the paradigm leading to the random walk (A12) would not be
possible.

Finally, we discuss the infinitesimal disturbances mentioned in connec-
tion with the instability of the solutions (A5) at y 5 0. Actually, the original
equation should be written in the form

ẏ 5 vy1/3 sin vt 1 ε, ε → 0 (A18)

where ε represents infinitesimal disturbances. It should be emphasized that
this process is not driving the solution of Eq. (A18): it only triggers the
mechanism of instability which controls the energy supply via the harmonic
oscillations sin vt. As follows from Eq. (A18), the disturbance ε can be
ignored when ẏ 5 0 or when ẏ Þ 0, but the equation is stable, i.e., y 5 pv,
2pv, . . . . However, it becomes significant during the instants of instability
when ẏ 5 0 at t 5 0, p/2v, etc. Indeed, at these instants, the solution to Eq.
(A18) can be positive or negative if ε 5 0 [see Eq. (A5)]. However, with
ε Þ 0,
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sign y 5 sign ε at t 5 0, p/2v, . . . (A19)

i.e., the sign of ε at the critical instances of time (A19) uniquely defines the
evolution of the dynamical system (A18). Thus, the dynamical system (A18)
creates a binary time series, which, in turn, generates a random walk paradigm
[Eq. (A2)].

We will start with the case when

ε 5 ε0 sin
1
y

, ε0 → 0 (A20)

The function sin(1/y) oscillates about zero with unbounded frequency at y →
0, and therefore, with equal probability it can be positive or negative at y →
0 if the precision of its representation is finite.

Therefore, the statistical signature of the random walk described by Eqs.
(A18), (A2), and (A20) is expressed by the solution to Eqs. (A12) and (A13)
at p 5 1/2. With the initial conditions

f (0, 0) 5 1, f (x, 0) 5 0 if x Þ 0

it is a symmetric unrestricted random walk:

f (x, t) 5 Cm
n 22n; m 5

1
2

(n 1 x); n 5 integer(2vt/p) (A21)

Here the binomial coefficient should be interpreted as 0 whenever m is not
an integer in the interval [0, n], and n is the total number of steps.

One can verify (by substitution) that the function v 5 sin(1/y) is the
solution to the following differential equation:

dv
dy

1
1
y2 !1 2 v2 5 0 or v̇ 5 2

ẏ
y2 !1 2 v2

(A22)

v̇ 5 2
ẏ
y2 !1 2 v2

Both equations in (A22) suffer from a failure of the Lipschitz conditions at
y 5 0.

Thus, the probabilities described by Eq. (A12) are simulated by the
dynamical system (A22) and (A2) without an explicit source of stochasticity
(while the “hidden” source of stochasticity is in finite precision of the func-
tions representation combined with the non-Lipschitz instability).

Combining several dynamical systems of the type (A22) and (A2) and
applying an appropriate change of variables, one can simulate a probabilistic
Turing machine which transfers one state to another with a prescribed transi-
tional probability. Non-Markovian properties of such a machine can be incor-
porated by introducing time-delay terms in equation (A2).
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ẋ 5 v(t) 1 a2v(t 2 t0) 1 a2v(t 2 2t0) 1 ???. (A23)

However, there is a more interesting way to enhance the dynamical
complexity of the system (A22) and (A2). Indeed, let us turn to Eq. (A23)
and introduce a feedback from Eq. (A2) to Eq. (A22) as follows.

ε 5 ε0(v 2 x) (A24)

Then the number of negative (positive) signs in the string (25) will
prevail if x . 0 (x , 0) since the effective zero-crossing line moves down
(up) away from the middle. Thus, when (x 5 0) at t 5 0, the system starts
with an unrestricted random walk as described above, and .x. grows. However,
this growth changes signs in Eq. (A24) such that ẋ , 0 if x . 0, and ẋ .
0 if x , 0. As a result of that

xmax # ymax xmin $ ymin (A25)

where ymax and ymin are the largest and the smallest values in the time series
y(t), respectively. Hence, the dynamical system (A22), and (A2) simulates a
restricted random walk with the boundaries (A25) implemented by the dynam-
ical feedback (A24), while the probability

p(sign ε . 0) 5 H0 if x $ ymax

1 if x # ymin
(A26)

For the sake of qualitative discussion, assume that p change linearly between
x 5 ymin and x 5 ymax, i.e.,

p 5 5
0 if x . ymax

ymax 2 x

ymax 2 ymin
if ymin # x # ymax

1 if x , ymin

(A27)

Then the simulated restricted random walk is a solution to equations (A12)
and (A27). An alternative approach to representation of the bias ε in Eq.
(A18) was described in [9] where ε was sampled from the chaotic time series
of the logistic map.
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